
SANDIA REPORT
SAND2016-10327
Unlimited Release
Printed October 2016

Performance Portability of the Aeras
Atmosphere Model to Next Generation
Architectures using Kokkos

Jerry Watkins, Irina Tezaur

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation,
a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s
National Nuclear Security Administration under contract DE-AC04-94AL85000.

Approved for public release; further dissemination unlimited.

Issued by Sandia National Laboratories, operated for the United States Department of Energy
by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United
States Government. Neither the United States Government, nor any agency thereof, nor any
of their employees, nor any of their contractors, subcontractors, or their employees, make any
warranty, express or implied, or assume any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process disclosed, or rep-
resent that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government, any agency thereof, or any of their contractors or subcontractors.
The views and opinions expressed herein do not necessarily state or reflect those of the United
States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best
available copy.

Available to DOE and DOE contractors from
U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865) 576-8401
Facsimile: (865) 576-5728
E-Mail: reports@adonis.osti.gov
Online ordering: http://www.osti.gov/bridge

Available to the public from
U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Rd
Springfield, VA 22161

Telephone: (800) 553-6847
Facsimile: (703) 605-6900
E-Mail: orders@ntis.fedworld.gov
Online ordering: http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online

D
E

P
A

R
T

M
ENT OF EN

E
R

G
Y

• •U
N

I
T

E
D

STATES OF
A

M

E
R

I
C

A

2

SAND2016-10327
Unlimited Release

Printed October 2016

Performance Portability of the Aeras Atmosphere
Model to Next Generation Architectures using Kokkos

Jerry Watkins
Extreme Scale Data Science & Analytics Department

Sandia National Laboratories
P.O. Box 969, MS 9159

Livermore, CA 94551-9159

Irina Tezaur
Extreme Scale Data Science & Analytics Department

Sandia National Laboratories
P.O. Box 969, MS 9159

Livermore, CA 94551-9159

Abstract

The subject of this report is the performance portability of the Aeras global atmosphere dynamical
core (implemented within the Albany multi-physics code) to new and emerging architecture ma-
chines using the Kokkos library and programming model. We describe the process of refactoring
the finite element assembly process for the 3D hydrostatic model in Aeras and highlight common
issues associated with development on GPU architectures. After giving detailed build and execute
instructions for Aeras with MPI, OpenMP and CUDA on the Shannon cluster at Sandia National
Laboratories and the Titan supercomputer at Oak Ridge National Laboratory, we evaluate the per-
formance of the code on a canonical test case known as the baroclinic instability problem. We
show a speedup of up to 4 times on 8 OpenMP threads, but we were unable to achieve a speedup
on the GPU due to memory constraints. We conclude by providing methods for improving the
performance of the code for future optimization.

3

Acknowledgment

Supported by the Laboratory Directed Research and Development program at Sandia National
Laboratories, a multi-program laboratory managed and operated by Sandia Corporation, a wholly
owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National
Nuclear Security Administration under contract DE-AC04-94AL85000.

This work would not have been possible without the aid of a number of Sandians. We are grateful
for the help of the Kokkos team including Mark Hoemmen, who helped with a number of issues
with the Kokkos implementation, as well as Simon Hammond and Eric Phipps, who helped resolve
compilation and execution issues on Shannon and Titan, respectively. We would like to thank all
those involved with Albany and Aeras for providing valuable feedback including Irina Demeshko
who started the Kokkos implementation in Albany and provided insight and comments throughout
the refactoring process. Special thanks to Oksana Guba for providing the 3D Hydrostatic test
cases and Peter Bosler for providing the numerical results. Lastly, we would like to thank Andy
Salinger, Kyungjoo Kim and Mauro Perego for the Dynamic Rank View refactoring of Albany and
Intrepid2. The results from GPU architectures would not have been complete without their work.

4

Contents

1 Introduction 9

2 Refactor of Aeras 3D Hydrostatic Model 11
2.1 Parallelizing over cells . 13
2.2 Development for Kokkos CUDA . 14

2.2.1 Maintaining memory within class scope . 14
2.2.2 Dynamic memory allocation . 15

3 Build Intructions 21
3.1 Shannon . 21

3.1.1 Building Albany master branch with Kokkos::Serial 21
3.1.2 Building Albany DynRankViewIntrepid2Refactor branch with

Kokkos::Cuda . 22
3.2 Titan . 23

3.2.1 Building Albany master branch with Kokkos::Serial 23
3.2.2 Building Albany DynRankViewIntrepid2Refactor branch with

Kokkos::Cuda . 24

4 Execution Intructions 27
4.1 Shannon . 27

4.1.1 MPI with Kokkos::Serial . 27
4.1.2 MPI+OpenMP with Kokkos::OpenMP . 28
4.1.3 MPI+GPU with Kokkos::Cuda . 28

4.2 Titan . 29
4.2.1 MPI with Kokkos::Serial . 29
4.2.2 MPI+OpenMP with Kokkos::OpenMP . 30
4.2.3 MPI+GPU with Kokkos::Cuda . 31

5 Verification 33

6 Performance Analysis 35
6.1 Multicore Analysis . 36
6.2 Strong Scalability . 37

6.2.1 OpenMP . 37
6.2.2 MPI vs. MPI+OpenMP . 38

6.3 Workset and Weak Scalability . 39
6.3.1 Workset Scalability . 39
6.3.2 Weak Scalability . 40

5

7 Discussion 41

References 43

6

List of Figures

5.1 Results of baroclinic wave instability for three meshes after 9 days. 34

6.1 Titan 16-core AMD Opteron 6274 CPU configuration . 35
6.2 OpenMP strong scalability for Aeras 3D Hydrostatic baroclinic instability prob-

lem, uniform 30 mesh . 37
6.3 MPI and MPI+OpenMP strong scalability study on Shannon for Aeras 3D Hydro-

static baroclinic instability problem, uniform 30 mesh . 38
6.4 MPI and MPI+OpenMP strong scalability study on Titan for Aeras 3D Hydrostatic

baroclinic instability problem, uniform 30 mesh . 38
6.5 OpenMP and Nvidia K80 GPU speedup over MPI as a function of the number of

elements per workset for Aeras 3D Hydrostatic baroclinic instability on Shannon
for the uniform 30 mesh . 39

6.6 OpenMP and Nvidia K20X GPU speedup over MPI for the Aeras 3D Hydrostatic
baroclinic instability test case on Titan . 40

7

List of Tables

5.1 Cubed-sphere mesh resolutions considered for Aeras 3D Hydrostatic performance
results . 33

6.1 Supercomputing Architectures . 36
6.2 Multicore analysis of two 16-core AMD Opteron 6274 CPUs with varying MPI

ranks and OpenMP threads . 36

8

Chapter 1

Introduction

The effects of climate change have pushed the need for more accurate and reliable global simu-
lations at very high resolutions. Higher resolutions require more computational power, and large,
high performance computing clusters are needed to obtain results within a reasonable amount of
time. As high performance computing architectures become increasingly more heterogeneous,
climate modeling tools must also adapt and be more efficient in taking advantage of potential
performance capabilities.

This report, which goes hand-in-hand with [7], describes our work involving the integration of the
Kokkos [3] library into a next generation global atmosphere model called Aeras for performance-
portability to next generation architectures, e.g., GPUs, Intel Xeon Phis, multi-core CPUs, etc.
Attention is restricted to porting only the finite element assembly in Aeras, as this operation re-
quires most of the computation effort in global atmosphere models.

The Aeras global atmosphere model was created as a part of a three-year project funded by Sandia
National Laboratories’ Laboratory-Directed Research and Development (LDRD) program. Imple-
mented within the Albany [6] open-source1 C++ finite element multi-physics code written using
the Trilinos [4] libraries, Aeras consists of a suite of atmosphere models: a shallow water model,
an x-z Hydrostatic model, and a 3D Hydrostatic model. For a detailed description of Aeras, the
reader is referred to [8, 7].

Aeras features two next-generation capabilities which are considered most relevant to a global
atmosphere model: performance portability and embedded uncertainty quantification (UQ). It is
the former of these capabilities that is the subject of this report. We focus on the 3D Hydrostatic
model in Aeras, as performance portability of the shallow water model was the subject of earlier
work by Demeshko et al. [1]. We achieve performance portability of Aeras (and, more broadly,
Albany) using the open-source Kokkos [3] library and programming model developed at Sandia
National Laboratories. The main benefit of Kokkos is that it allows for a single implementation of
a computational kernel to run efficiently on hardware with drastically different memory models.
This is enabled by data abstractions that adjust at compile time the memory layout of basic data
structures to allow the transparent utilization of special hardware load and store operations.

The remainder of this report is organized as follows. In Chapter 2, we describe our refactor of
the Aeras 3D Hydrostatic model using Kokkos. Chapters 3 and 4 gives detailed instructions for

1Albany is available on github: https://github.com/gahansen/Albany.

9

building and running Albany on two platforms, both of which contain GPUs: the Shannon clus-
ter at Sandia National Laboratories, and the Titan supercomputer at Oak Ridge National Labora-
tory. In Chapter 5, we evaluate the performance of the Aeras model on these platforms with three
KokkosNodes: Serial, OpenMP and CUDA. Attention is focused on a canonical 3D Hydrostatic
test case known as the baroclinic instability problem [5]. Our results as well as future research
directions are discussed in Chapter 7.

10

Chapter 2

Refactor of Aeras 3D Hydrostatic Model

This section describes the process of refactoring the Aeras code to work on next generation ar-
chitectures via Kokkos when solving the 3D hydrostatic equations on the sphere. Similar to the
Euler/Navier-Stokes, the 3D hydrostatic equations are a set of conservation laws for mass, momen-
tum and energy [9]. These equations can be formulated into a primitive form to solve for density,
velocity and temperature directly.

The equations are discretized using the spectral element method and the solution is advanced in
time using a Runge-Kutta, explicit time integration. The global mesh is constructed using quadri-
lateral shell elements on a spherical shell domain. The mass matrix of the system is diagonal and
trivial to invert when a Gauss-Lobatto points are used and the matrix is easily inverted. A finite
difference technique is used in a hybrid vertical coordinate system and hyperviscosity is used to
stabilize the system.

The finite element assembly process requires the computation of a Jacobian matrix (Jac) and a
residual vector (Res). In Albany, the algorithm for the assembly is split into three sections:

1. Gather Jac/Res from a global structure and store it into a local structure

2. Compute Jac/Res

3. Scatter Jac/Res from a local structure to a global structure

The assembly is split into a number of evaluators. These are listed below:

Function Evaluators:

1. ComputeBasisFunctions

2. Pressure

3. Velocity

4. PiVel

5. SPressureResid

6. VirtualT

11

7. Density

8. Omega

9. SurfaceGeopotential

10. GeoPotential

11. EtaDotPi

12. TemperatureResid

13. KineticEnergy

14. VelResid

15. VorticityLevels

Interpolation Routines:

1. DOFDivInterpolationLevels

2. DOFGradInterpolationLevels

3. DOFVecInterpolationLevels

4. DOFInterpolationLevels

5. DOFInterpolation

6. DOFDInterpolationLevels

Gather/Scatter:

1. GatherSolution

2. ScatterHydrostatic

3. ComputeAndScatterJacobian

Computing and scattering the Jacobian only occurs once during preprocessing while the residual
is gathered, computed and scattered at each iteration.

Parallelizing the assembly process among multiple CPU cores can be achieved by distributing a
mesh among MPI ranks so that each rank can compute a certain chunk of cells. Each chunk can
further be parallelized by utilizing more cores or dedicated cards (e.g. GPUs). The following
sections describe how the latter speedup is achieved though Kokkos. A number of resources were
used to refactor Aeras using the Kokkos library [10, 2]. It’s highly recommended to go through
these resources for a more in depth understanding of Kokkos.

12

2.1 Parallelizing over cells

A significant amount of speedup can be achieved in each evaluator by parallelizing each operation
over cells. Most of the evaluators can be parallelized by using Kokkos::parallel_for. The
gather and scatter operation are parallelized by using Kokkos::atomic_fetch_add. This section
focuses on the Kokkos::parallel_for operator. Consider the following evaluator,

template<typename EvalT, typename Traits>
void XZHydrostatic_Pressure<EvalT, Traits>::
evaluateFields(typename Traits::EvalData workset)
{
for (int cell=0; cell < workset.numCells; ++cell) {
for (int node=0; node < numNodes; ++node) {

for (int level=0; level < numLevels; ++level) {
Pressure(cell,node,level) = A(level)*P0 + B(level)*Ps(cell,node);

}
}

}
}

In this case, pressure is being computed in each cell, node and vertical level on the mesh. This type
of operation is embarrassingly parallel and each computation of pressure could theoretically occur
at the same time on every point in the mesh. This loop can be parallelized rather easily by using a
Kokkos parallel_for. The transformation is shown below,

template<typename EvalT, typename Traits>
void XZHydrostatic_Pressure<EvalT, Traits>::
evaluateFields(typename Traits::EvalData workset)
{
Kokkos::parallel_for(XZHydrostatic_Pressure_Policy(0,workset.numCells),
*this);

}

The Range Policy, XZHydrostatic_Pressure_Policy, is defined in the class definition,

typedef Kokkos::RangePolicy<ExecutionSpace, XZHydrostatic_Pressure_Tag>
XZHydrostatic_Pressure_Policy;

An execution space and a tag are passed into the Range Policy as template parameters. The exe-
cution space, ExecutionSpace, is needed to ensure that the operation is executed on the Phalanx
device, PHX::Device. The tag, XZHydrostatic_Pressure_Tag, is used to point to a specific
Kokkos operator. The template parameters and the Kokkos operator are also defined in the class
definition,

typedef Kokkos::View<int***, PHX::Device>::execution_space ExecutionSpace;
struct XZHydrostatic_Pressure_Tag{};

KOKKOS_INLINE_FUNCTION

13

void operator() (const XZHydrostatic_Pressure_Tag& tag, const int& i) const;

Note that the operator is defined as an inline function. The operator is shown below,

template<typename EvalT, typename Traits>
KOKKOS_INLINE_FUNCTION
void XZHydrostatic_Pressure<EvalT, Traits>::
operator() (const XZHydrostatic_Pressure_Tag& tag, const int& cell) const{
for (int node=0; node < numNodes; ++node) {
for (int level=0; level < numLevels; ++level) {

Pressure(cell,node,level) = A(level)*P0 + B(level)*Ps(cell,node);
}

}
}

This operator is often referred to as a kernel. The kernel can now be used to run on a variety of
different Kokkos devices (e.g. OpenMP, CUDA) and is ready to be used on any future Kokkos
devices under development. In this case, the computation is only parallelized over cells but further
parallelization is available. A simple way to parallelize over all indices will be made available in
future releases of Kokkos.

2.2 Development for Kokkos CUDA

Kokkos kernels offer a lot of flexibility when compiling for different devices. Optimal data layouts
are constucted at compile time for each kernel but a programmer must utilize Kokkos Views. By
using Kokkos Views, a programmer can ensure that all memory is allocated on the device. This
also limits the amount of automatic memory transfer needed by CUDA UVM. Without the use of
Views, kernels which may perform well in OpenMP may not work well in CUDA. In the worst
case, a kernel may not even compile for CUDA. Some common issues are listed below.

2.2.1 Maintaining memory within class scope

Memory that is accessed in a Kokkos kernel must be available within the scope of the class. Con-
sider the following modified Kokkos kernel,

template<typename EvalT, typename Traits>
KOKKOS_INLINE_FUNCTION
void XZHydrostatic_Pressure<EvalT, Traits>::
operator() (const XZHydrostatic_Pressure_Tag& tag, const int& cell) const{
for (int node=0; node < numNodes; ++node) {
for (int level=0; level < numLevels; ++level) {

Pressure(cell,node,level) = A(level)*E.p0() + B(level)*Ps(cell,node);
}

14

}
}

Notice that the constant reference pressure, p0, is being accessed from a different class, E, via a
function call. This may work for a kernel that is run on the host (i.e. OpenMP) but it will not work
for a kernel that is run on a device (i.e. CUDA). This variable needs to be brought into the scope
of the class before the Kokkos kernel is called.

2.2.2 Dynamic memory allocation

Dynamic memory allocation within a CUDA kernel is typically avoided due to loss in performance.
A Kokkos kernel will still allow dynamic memory allocation on the host execution space but not
on the CUDA execution space. There are multiple ways of avoiding dynamic memory allocation,

1. Allocate dynamic memory outside the kernel:
This may be very simple but it may lead to data corruption. To avoid data corruption, a
large enough array must be allocated so that different threads are not writing into the same
memory address. This could lead to large dynamic memory allocations and should generally
be avoided.

2. Allocate static memory inside the kernel:
Sometimes the size of the array is already known at compile time. In this case, static memory
allocation can both improve performance and be used on the fly inside the kernel. Even if
the size of an array is not known, it’s possible to set an upper bound on the possible memory
usage and throw an error if this upper bound is reached.

3. Compile kernels for all possible cases:
Sometimes the size of the array is known for a fixed number of cases. In this case, a kernel
can be compiled with static memory allocation for each case. This may lead to long compile
times or large programs if there are too many cases.

4. Split the kernel into multiple kernels:
Often times the best option is to write multiple kernels instead of trying to do too much work
inside a single kernel.

Each method may be valid depending on the kernel. To further illustrate this point, consider the
following example,

template<typename EvalT, typename Traits>
KOKKOS_INLINE_FUNCTION
void XZHydrostatic_Pressure<EvalT, Traits>::
operator() (const XZHydrostatic_Pressure_Tag& tag, const int& cell) const{
Kokkos::View<double*,PHX::Device> A("A", numLevels);
for (int level=0; level < numLevels; ++level) {
A(level) = 0.5*(a(level) + a(level+1));

}

15

for (int node=0; node < numNodes; ++node) {
for (int level=0; level < numLevels; ++level) {

Pressure(cell,node,level) = A(level)*P0 + B(level)*Ps(cell,node);
}

}
}

In this case, a Kokkos::View is being used to allocate dynamic memory inside the kernel. This
will work on the host execution space but not on the CUDA execution space.

Allocate dynamic memory outside the kernel:
If the dynamic memory is allocated outside the kernel, data corruption will occur because each
thread will try to fill the array for each cell. One possible solution is to allocate sufficient dynamic
memory to avoid data corruption,

template<typename EvalT, typename Traits>
void XZHydrostatic_Pressure<EvalT, Traits>::
evaluateFields(typename Traits::EvalData workset)
{
A = Kokkos::View<double**,PHX::Device>("A", workset.numCells, numLevels);
Kokkos::parallel_for(XZHydrostatic_Pressure_Policy(0,workset.numCells),
*this);

}

Note that A must be defined in the class definition. Now each thread will be able to write to a
separate memory address,

template<typename EvalT, typename Traits>
KOKKOS_INLINE_FUNCTION
void XZHydrostatic_Pressure<EvalT, Traits>::
operator() (const XZHydrostatic_Pressure_Tag& tag, const int& cell) const{
for (int level=0; level < numLevels; ++level) {
A(cell,level) = 0.5*(a(level) + a(level+1));

}

for (int node=0; node < numNodes; ++node) {
for (int level=0; level < numLevels; ++level) {

Pressure(cell,node,level) = A(cell,level)*P0 + B(level)*Ps(cell,node);
}

}
}

If the number of cells is too large, this may lead to a memory constraint.

16

Allocate static memory inside the kernel:
Another option is to allocate sufficient static memory inside the kernel,

template<typename EvalT, typename Traits>
KOKKOS_INLINE_FUNCTION
void XZHydrostatic_Pressure<EvalT, Traits>::
operator() (const XZHydrostatic_Pressure_Tag& tag, const int& cell) const{
if (numLevels > 100)
Kokkos::abort("Error in XZHydrostatic_Pressure Kokkos kernel: numLevels > 100!")

double A[100];
for (int level=0; level < numLevels; ++level) {
A[level] = 0.5*(a(level) + a(level+1));

}

for (int node=0; node < numNodes; ++node) {
for (int level=0; level < numLevels; ++level) {

Pressure(cell,node,level) = A[level]*P0 + B(level)*Ps(cell,node);
}

}
}

This assumes that the number of levels will never reach a value above 100. Also, if the number of
levels is much less than 100, a lot of unused memory is being allocated on the stack.

Compile kernels for all possible cases:
A set of kernels can be precompiled if there are only a few cases which are going to be used in
a specific application. For example, if the set consists of numLevels={10,15,30,60}, a Kokkos
parallel_for can be used for each case,

template<typename EvalT, typename Traits>
void XZHydrostatic_Pressure<EvalT, Traits>::
evaluateFields(typename Traits::EvalData workset)
{
// numLevels must be known at compile time in order to allocate array in kernel
switch (numLevels) {
case 10: {

Kokkos::parallel_for(XZHydrostatic_Pressure_Policy<10>(0,workset.numCells),
*this);

break;
}
case 15: {

Kokkos::parallel_for(XZHydrostatic_Pressure_Policy<15>(0,workset.numCells),
*this);

break;
}
case 30: {

17

Kokkos::parallel_for(XZHydrostatic_Pressure_Policy<30>(0,workset.numCells),
*this);

break;
}
case 60: {

Kokkos::parallel_for(XZHydrostatic_Pressure_Policy<60>(0,workset.numCells),
*this);

break;
}
default: {

TEUCHOS_TEST_FOR_EXCEPTION(true, std::logic_error,
"XZHydrostatic_Pressure Kokkos kernel not constructed for this case"
<< std::endl);

break;
}

}
}

In this case, the Range Policy is templated,

template<int numLvls>
using XZHydrostatic_Pressure_Policy = Kokkos::RangePolicy
<ExecutionSpace, XZHydrostatic_Pressure_Tag<numLvls>>;

The tag and Kokkos operator are also templated,

typedef Kokkos::View<int***, PHX::Device>::execution_space ExecutionSpace;

template<int numLvls>
struct XZHydrostatic_Pressure_Tag{};

template<int numLvls>
KOKKOS_INLINE_FUNCTION
void operator() (const XZHydrostatic_Pressure_Tag<numLvls>& tag, const int& i) const;

Now the Kokkos kernel can use the value numLvls to allocate a static memory at compile time,

template<typename EvalT, typename Traits>
template<int numLvls>
KOKKOS_INLINE_FUNCTION
void XZHydrostatic_Pressure<EvalT, Traits>::
operator() (const XZHydrostatic_Pressure_Tag<num_Lvls>& tag, const int& cell) const{
double A[numLvls];
for (int level=0; level < numLvls; ++level) {
A[level] = 0.5*(a(level) + a(level+1));

}

for (int node=0; node < numNodes; ++node) {
for (int level=0; level < numLvls; ++level) {

18

Pressure(cell,node,level) = A[level]*P0 + B(level)*Ps(cell,node);
}

}
}

Each kernel will be compiled so this method may lead to longer compile times or a larger exe-
cutable.

Split the kernel into multiple kernels:
In this case, the last option is the best option. The array A need not be computed multiple times
since it has no dependency on different cells. In the code, A is precomputed and used wherever it’s
needed. This is a very simple example and the last option may not always be available.

It is important to note that although static memory allocation is faster on both CPUs and GPUs, the
GPU has limited register memory and register “spilling” can occur if the static memory allocation
is too large. This can lead to a significant degradation in performance so it is something to keep in
mind when writing kernels.

19

20

Chapter 3

Build Intructions

These build instructions are for compiling Albany on the Shannon cluster at Sandia National Lab-
oratories and the Titan1 supercomputer at Oak Ridge National Laboratory.

3.1 Shannon

In order to clone remote repositories from github, set the following proxy settings:

export https_proxy="https://wwwproxy.sandia.gov:80"
export http_proxy="http://wwwproxy.sandia.gov:80"

The Trilinos and Albany can be downloaded from github as follows:

git clone https://github.com/trilinos/Trilinos.git
git clone https://github.com/gahansen/Albany.git

3.1.1 Building Albany master branch with Kokkos::Serial

Load the following modules:

module purge
module load openmpi/1.10.1/gcc/5.1.0/cuda/7.5.7 cmake/2.8.11.2

Make a build directory for Trilinos and copy over the configuration file provided in Albany/doc/:

cd Trilinos/
mkdir build-kokkos-serial
cd build-kokkos-serial/
cp ../../Albany/doc/do-cmake-trilinos-shannon-serial ./

Before building Trilinos, log into a batch node:

salloc -N1 -p pbatch

1https://www.olcf.ornl.gov/titan/.

21

Build Trilinos by using the configuration file provided:

source do-cmake-trilinos-shannon-serial
make -j 16
make install

For debugging, use make -j 16 2>&1 | tee output.txt to output the results of make into a
file.

Make a build directory for Albany and copy over the configuration file provided in Albany/doc/:

cd ../../Albany/
mkdir build-kokkos-serial/
cd build-kokkos-serial/
cp ../doc/do-cmake-albany-shannon ./

Make sure to modify the file to point to your Trilinos build directory and build:

source do-cmake-albany-shannon
make -j 16

Once building is complete, exit the batch node:

exit

The same instructions can be used to build the Albany master branch with Kokkos::OpenMP except
that the configuration file Albany/doc/do-cmake-trilinos-shannon-openmp needs to be used
instead of Albany/doc/do-cmake-trilinos-shannon-serial.

3.1.2 Building Albany DynRankViewIntrepid2Refactor branch with
Kokkos::Cuda

First checkout the Trilinos develop branch in the Trilinos directory:

git checkout develop

Checkout the Albany DynRankViewIntrepid2Refactor branch in the Albany directory:

git checkout DynRankViewIntrepid2Refactor

Load the following modules:

module purge
module load openmpi/1.10.1/gnu/4.7.2/cuda/7.5.7 cmake/2.8.11.2
module load nvcc-wrapper/gnu

Set the following compiler and GPU settings. Make sure to modify the OMPI_CXX path to point to
your nvcc_wrapper file:

22

export NVCC_WRAPPER_DEFAULT_COMPILER=mpicc
export OMPI_CXX=/home/jwatkin/Trilinos/packages ...

/kokkos/config/nvcc_wrapper
export CUDA_MANAGED_FORCE_DEVICE_ALLOC=1
export CUDA_LAUNCH_BLOCKING=1

Make a build directory for Trilinos and copy over the configuration file:
Albany/doc/do-cmake-trilinos-shannon-cuda. Make sure to modify the OMPI_CXX path to
point to your nvcc_wrapper file. Log into a batch node:

salloc -N1 -p pbatch

Build Trilinos by using the configuration file provided:

source do-cmake-trilinos-shannon-cuda
make -j 16
make install

Make a build directory for Albany and copy over the configuration file:
Albany/doc/do-cmake-albany-shannon. Make sure to modify the file to point to your Trilinos
build directory and build:

source do-cmake-albany-shannon
make -j 16

Once building is complete, exit the batch node:

exit

3.2 Titan

Download Trilinos and Albany from github:

git clone https://github.com/trilinos/Trilinos.git
git clone https://github.com/gahansen/Albany.git

3.2.1 Building Albany master branch with Kokkos::Serial

Load the following modules:

module swap PrgEnv-pgi PrgEnv-gnu
module load cray-netcdf-hdf5parallel cmake3/3.2.3 boost

Make a build directory for Trilinos and copy over the configuration file:
Albany/doc/do-cmake-trilinos-titan-serial.

23

Build Trilinos:

source do-cmake-trilinos-titan-serial
make -j 8
make install

Make a build directory for Albany and copy over the configuration file:
Albany/doc/do-cmake-albany-titan.

Make sure to modify the file to point to your Trilinos build directory and build:

source do-cmake-albany-titan
make -j 8

The same instructions can be used to build the Albany master branch with Kokkos::OpenMP except
that the configuration file Albany/doc/do-cmake-trilinos-titan-openmp needs to be used
instead of Albany/doc/do-cmake-trilinos-titan-serial.

If a linking error occurs after make, some modifications need to be made to the link line:

1. cd src/

2. Add “ /usr/lib64/libxml*.a /usr/lib64/libpciaccess.a -static-libstdc++ -static-libgcc” to the
end of the following file: CMakeFiles/Albany.dir/link.txt

3. Copy the linking script from CMakeFiles/Albany.dir/link.txt and paste into the termi-
nal.

4. Repeat this process for every Albany executable.

3.2.2 Building Albany DynRankViewIntrepid2Refactor branch with
Kokkos::Cuda

First checkout the Trilinos develop branch in the Trilinos directory:

git checkout develop

Checkout the Albany DynRankViewIntrepid2Refactor branch in the Albany directory:

git checkout DynRankViewIntrepid2Refactor

Load the following modules:

module swap PrgEnv-pgi PrgEnv-gnu
module load cray-netcdf-hdf5parallel cmake3/3.2.3 boost
module load cudatoolkit

24

Set the following compiler and GPU settings. Make sure to modify the NVCC_WRAPPER_PATH path
to point to your nvcc_wrapper file:

NVCC_WRAPPER_PATH=$HOME/Trilinos/packages/kokkos/config/nvcc_wrapper
export NVCC_WRAPPER_DEFAULT_COMPILER=CC
export CUDA_MANAGED_FORCE_DEVICE_ALLOC=1
export CUDA_LAUNCH_BLOCKING=1

Make a build directory for Trilinos and copy over the configuration file:
Albany/doc/do-cmake-trilinos-titan-cuda. Make sure to modify the NVCC_WRAPPER_PATH
path to point to your nvcc_wrapper file.

Build Trilinos:

source do-cmake-trilinos-titan-cuda
make -j 8
make install

Make a build directory for Albany and copy over the configuration file:
Albany/doc/do-cmake-albany-titan.

Make sure to modify the file to point to your Trilinos build directory and build:

source do-cmake-albany-titan
make -j 8

You might receive the following linking error:

/usr/bin/ld: cannot find -lcusparse
/usr/bin/ld: cannot find -lcudart
/usr/bin/ld: cannot find -lcublas
/usr/bin/ld: cannot find -lcufft
/usr/bin/ld: cannot find -lcupti
/usr/bin/ld: cannot find -lcudart
/usr/bin/ld: cannot find -lcuda
collect2: error: ld returned 1 exit status

If this linking error does occur after make, some modifications need to be made to the link line:

1. cd src/

2. Remove all instances of “-Wl,-Bdynamic”, “-Wl,-Bdynamic”, “-lcusparse”, “-lcudart”,
“-lcublas”, “-lcufft”, “-lcupti”, “-lcudart” and “-lcuda” from the following file:
CMakeFiles/Albany.dir/link.txt

3. Add
“ -Wl,-Bdynamic -lcusparse -lcudart -lcublas -lcufft -lcupti -lcudart -lcuda”
to the end of the file.

25

4. Copy the linking script from CMakeFiles/Albany.dir/link.txt and paste into the termi-
nal.

5. Repeat this process for every Albany executable.

26

Chapter 4

Execution Intructions

These execution instructions are for running Aeras on the Shannon and Titan clusters. Batch scripts
are used to submit jobs to a queue manager. The shell script will run when resources become
available.

4.1 Shannon

Shannon uses Slurm as its resource manager and job scheduler. A set of nodes can be obtained
and commands can be entered interactively by using salloc. A batch script can also be used to
run jobs by using the command sbatch [BatchScriptFile]. To view information about jobs,
use the command squeue. Here are some example batch script files for using different devices on
Shannon.

4.1.1 MPI with Kokkos::Serial

#!/bin/bash -login

#SBATCH --job-name=MPIjob
#SBATCH --output=MPIjob.%j.out # %j is the job number
#SBATCH --error=MPIjob.%j.err
#SBATCH --partition=fatk20x # Shannon partition
#SBATCH --nodes=8 # Number of nodes
#SBATCH --ntasks=128 # Number of MPI ranks
#SBATCH --ntasks-per-node=16 # Number of MPI ranks per node
#SBATCH --cpus-per-task=1 # Number of cores per MPI rank
#SBATCH --exclusive # No other jobs can run on this node

Load modules
module purge
module load openmpi/1.10.1/gcc/5.1.0/cuda/7.5.7 cmake/2.8.11.2

Run MPI job
mpirun -n 128 [AlbanyExecutable] [InputFile]

27

4.1.2 MPI+OpenMP with Kokkos::OpenMP

#!/bin/bash -login

#SBATCH --job-name=MPIOMPjob
#SBATCH --output=MPIOMPjob.%j.out # %j is the job number
#SBATCH --error=MPIOMPjob.%j.err
#SBATCH --partition=fatk20x # Shannon partition
#SBATCH --nodes=8 # Number of nodes
#SBATCH --ntasks=16 # Number of MPI ranks
#SBATCH --ntasks-per-node=2 # Number of MPI ranks per node
#SBATCH --cpus-per-task=8 # Number of cores per MPI rank
#SBATCH --exclusive # No other jobs can run on this node

Load modules
module purge
module load openmpi/1.10.1/gcc/5.1.0/cuda/7.5.7 cmake/2.8.11.2

OpenMP environment variables
export OMP_DISPLAY_ENV=TRUE # Displays the map of openmp threads to CPU cores
export OMP_PROC_BIND=TRUE # Ensures that threads remain within a processor
export OMP_NUM_THREADS=8 # Number of OpenMP threads per MPI rank

Run MPIOMP job
mpirun -n 16 --map-by ppr:1:socket:pe=8 [AlbanyExecutable] [InputFile]

--map-by ppr:1:socket:pe=8 : maps each MPI rank to 1 CPU socket and
uses 8 processing elements (openmp threads)

4.1.3 MPI+GPU with Kokkos::Cuda

#!/bin/bash -login

#SBATCH --job-name=MPIGPUjob
#SBATCH --output=MPIGPUjob.%j.out # %j is the job number
#SBATCH --error=MPIGPUjob.%j.err
#SBATCH --partition=fatk20x # Shannon partition
#SBATCH --nodes=8 # Number of nodes
#SBATCH --ntasks=32 # Number of MPI ranks
#SBATCH --ntasks-per-node=4 # Number of MPI ranks per node
#SBATCH --cpus-per-task=1 # Number of cores per MPI rank
#SBATCH --exclusive # No other jobs can run on this node

Load modules
module purge
module load openmpi/1.10.1/gnu/4.7.2/cuda/7.5.7 cmake/2.8.11.2
module load nvcc-wrapper/gnu

28

GPU environment variables (for CUDA UVM)
export CUDA_MANAGED_FORCE_DEVICE_ALLOC=1
export CUDA_LAUNCH_BLOCKING=1

Run MPIGPU job
mpirun -n 32 [AlbanyExecutable] [InputFile] --kokkos-ndevice=4

--kokkos-ndevice=4 : sets the number of GPUs used per node

For more information about sbatch and its different options, go to http://slurm.schedmd.com/
sbatch.html.

4.2 Titan

Titan uses a different resource manager and job scheduler. A set of nodes can be obtained and
commands can be entered interactively by using qsub. A batch script can also be used to run jobs
by using the command qsub [BatchScriptFile]. To view information about your jobs, use
the command showq | grep [UserName]. Here are some example batch script files for using
different devices on Titan.

4.2.1 MPI with Kokkos::Serial

#!/bin/bash
#PBS -A [ProjectAllocation]
#PBS -N MPIjob # Job Name
#PBS -o MPIjob.$PBS_JOBID.out # $PBS_JOBID is the job number
#PBS -j oe # stdout and stderr to the file above
#PBS -m e # Send email when job is complete
#PBS -M [EmailAddress]
#PBS -l nodes=64 # Number of nodes
#PBS -l walltime=00:10:00 # Maximum wall-clock time

Format: [Hours]:[Minutes]:[Seconds]

Load modules
source $MODULESHOME/init/bash
module swap PrgEnv-pgi PrgEnv-gnu
module load cray-netcdf-hdf5parallel cmake3/3.2.3 boost

Change to working directory
cd $MEMBERWORK/[ProjectAllocation]/

Make a directory for run and change to that directory
mkdir MPIjob_$PBS_JOBID

29

cd MPIjob_$PBS_JOBID

Copy executable file, input file and mesh files to current directory
cp [AlbanyExecutable] ./
cp [InputFile] ./
cp [MeshFiles] ./

Run MPI job
aprun -n 1024 [AlbanyExecutable] [InputFile]

4.2.2 MPI+OpenMP with Kokkos::OpenMP

#!/bin/bash
#PBS -A [ProjectAllocation]
#PBS -N MPIOMPjob # Job Name
#PBS -o MPIOMPjob.$PBS_JOBID.out # $PBS_JOBID is the job number
#PBS -j oe # stdout and stderr to the file above
#PBS -m e # Send email when job is complete
#PBS -M [EmailAddress]
#PBS -l nodes=64 # Number of nodes
#PBS -l walltime=00:10:00 # Maximum wall-clock time

Format: [Hours]:[Minutes]:[Seconds]

Load modules
source $MODULESHOME/init/bash
module swap PrgEnv-pgi PrgEnv-gnu
module load cray-netcdf-hdf5parallel cmake3/3.2.3 boost

OpenMP environment variables
export OMP_NUM_THREADS=8 # Number of OpenMP threads per MPI rank

Change to working directory
cd $MEMBERWORK/[ProjectAllocation]/

Make a directory for run and change to that directory
mkdir MPIOMPjob_$PBS_JOBID
cd MPIOMPjob_$PBS_JOBID

Copy executable file, input file and mesh files to current directory
cp [AlbanyExecutable] ./
cp [InputFile] ./
cp [MeshFiles] ./

Run MPIOMP job
aprun -n128 -N2 -d8 -cc 0-7:8-15 [AlbanyExecutable] [InputFile]

-N : Number of MPI ranks per node

30

-d : Number of cores per MPI rank
-cc : List of CPU cores per MPI rank per node
Binds each thread to a specific core

4.2.3 MPI+GPU with Kokkos::Cuda

#!/bin/bash
#PBS -A [ProjectAllocation]
#PBS -N MPIGPUjob # Job Name
#PBS -o MPIGPUjob.$PBS_JOBID.out # $PBS_JOBID is the job number
#PBS -j oe # stdout and stderr to the file above
#PBS -m e # Send email when job is complete
#PBS -M [EmailAddress]
#PBS -l nodes=64 # Number of nodes
#PBS -l walltime=00:10:00 # Maximum wall-clock time

Format: [Hours]:[Minutes]:[Seconds]

Load modules
source $MODULESHOME/init/bash
module swap PrgEnv-pgi PrgEnv-gnu
module load cray-netcdf-hdf5parallel cmake3/3.2.3 boost
module load cudatoolkit

GPU environment variables (for CUDA UVM)
export CUDA_MANAGED_FORCE_DEVICE_ALLOC=1
export CUDA_LAUNCH_BLOCKING=1

Change to working directory
cd $MEMBERWORK/[ProjectAllocation]/

Make a directory for run and change to that directory
mkdir MPIGPUjob_$PBS_JOBID
cd MPIGPUjob_$PBS_JOBID

Copy executable file, input file and mesh files to current directory
cp [AlbanyExecutable] ./
cp [InputFile] ./
cp [MeshFiles] ./

Run MPIGPU job
aprun -n64 -N1 [AlbanyExecutable] [InputFile]

-N : Number of MPI ranks per node

For more information about running jobs on Titan, go to https://www.olcf.ornl.gov/support/
system-user-guides/titan-user-guide/#273.

31

32

Chapter 5

Verification

In this section, the baroclinic instability test case [5] is simulated in order to verify the implemen-
tation of the 3D Hydrostatic equations in Aeras. Table 5.1 shows the three cubed-sphere mesh
resolutions used in these simulations along with other notable parameters. Bicubic shell quadrilat-

Mesh Resolution # Elements Fixed dt Hyperviscosity Tau
uniform 30 1.0◦ 5400 30 5.00e15
uniform 60 0.5◦ 21,600 10 1.09e14

uniform 120 0.25◦ 86,400 5 1.18e13

Table 5.1. Cubed-sphere mesh resolutions considered for Aeras
3D Hydrostatic performance results

eral spectral elements were used for this test case for total of 16 nodes per element and 10 levels
were used in the vertical direction. Each simulation is advanced in time using an explicit 4 stage,
3rd order Runge-Kutta time-stepping scheme. The results of the simulation are plotted in Figure
5.1 after a total physical time of 9 days. These plots are qualitatively similar to results obtained
using the Higher-Order Methods Modeling Environment (HOMME) CAM-SE1 dynamical core.
For a more detailed discussion of the verification of the 3D Hydrostatic model in Aeras, including
quantitative verification results, the reader is referred to the Aeras project final report [7].

1Community Atmosphere Model – Spectral Element.

33

Figure 5.1. Results of baroclinic wave instability for three
meshes after 9 days.

34

Chapter 6

Performance Analysis

In this section, the computational performance of the Kokkos implementation for the Aeras 3D
Hydrostatic equations is characterized by using OpenMP and CUDA. We focus our performance
analysis on the baroclinic instability test case for the meshes in Table 5.1. The same input settings
were used as before except each simulation is only advanced 100 iterations. The wall-clock time
of each simulation is computed by subtracting the setup time from the total wall-clock time of the
simulation.

The Sandia supercomputing cluster called Shannon contains 32 nodes each with two 8-core 2.60GHz
Intel Xeon E5-2670 processors and either 2 K80, 2 K20x, 4 K20x or 4 K40m NVIDIA GPUs. In
contrast, the Oak Ridge Titan cluster contains 18,688 physical compute nodes each with a 16-core
2.2GHz AMD Opteron 6274 processor shown in Figure 6.1 and an NVIDIA K20X GPU. Table
6.2 show more specific details about the architectures.

Figure 6.1. Titan 16-core AMD Opteron 6274 CPU configura-
tion

35

Shannon Titan

Nodes 32 18688
CPU Intel Xeon E5-2670 AMD Opteron 6274
GPU Varies per node 1 K20x
Memory/node 128 GB 32 GB
Interconnect QDR IB Gemini
OS RedHat 6.2 Cray Linux
Compiler gcc 4.7.2 gcc 4.9.3
MPI openmpi 1.10.1 cray-mpich 7.4.0
NVCC 7.5.7 7.5.18

Table 6.1. Supercomputing Architectures

6.1 Multicore Analysis

A multicore analysis is performed on the Titan 16-core AMD CPU architecture shown in Figure
6.1 in order to determine the best MPI+OpenMP rank/thread to core map for the 3D Hydrostatic
problem. The CPU has a unique cache layout and computing scheme with various levels of cache
and a shared floating point scheduler between each pair of cores. This could help or hinder perfor-
mance depending on the mapping used by MPI and OpenMP.

Three maps are tested with varying levels of MPI ranks and OpenMP threads. The first named
“Close” uses 1 MPI rank and 2 OpenMP threads per compute unit in order maintain a level of
shared memory in L2 cache. The second named “Spread” uses 2 MPI ranks and 1 OpenMP thread
per rank per compute unit in order to minimize the interaction between threads on a single compute
unit. The third named “Control” uses 1 MPI rank and 1 OpenMP thread per compute unit in order
to eliminate the interaction between ranks and threads on a single compute unit. The wall-clock
time for all cases are shown in Table 6.2 for a distribution across two nodes (2 CPUs or 36 cores).

Close Spread Control

MPI ranks 4 8 16 4 8 16 2 4 8
OpenMP threads 8 4 2 8 4 2 8 4 2
Wall-clock Time (s) 60.7 52.0 47.2 84.8 54.2 49.1 113.1 79.7 71.9

Table 6.2. Multicore analysis of two 16-core AMD Opteron 6274
CPUs with varying MPI ranks and OpenMP threads

In this case, the “Close” map produced the fastest simulation times showing that it is better to
maintain threads within a close proximity. Since the “Close” map produced faster times than the
control, it is also safe to assume that it is better to utilize all cores even when a pair of cores
share a floating point scheduler. The results also show that more MPI ranks and less OpenMP
threads produce faster simulation times. This means that the MPI implementation is more efficient
when compared to the Kokkos OpenMP implementation. This will be explained further in the next
section.

36

6.2 Strong Scalability

Two strong scalability studies are performed for OpenMP, MPI and MPI+OpenMP in order to
determine two crucial properties. First, a strong scalability study of OpenMP will show how
well OpenMP scales when using more threads. Second, a strong scalability study of MPI and
MPI+OpenMP will show whether an MPI+OpenMP architecture can be faster than pure MPI (i.e.
1 MPI rank per core). A strong scalability study for MPI+GPU was not performed because memory
constraints on a single GPU.

6.2.1 OpenMP

Figure 6.2 shows the speedup and efficiency of OpenMP for up to 16 cores on both the Shannon and
Titan clusters. Speedup is calculated by dividing the wall-clock time of the single core simulation
and dividing it by the wall-clock time of the subsequent multithreaded simulations. Efficiency
is calculated by dividing the ideal speedup by the actual speedup (i.e. 16 cores should produce
a speedup of 16 but the results show a much lower speedup leading to a lower percentage). In
this particular case the Shannon Intel Xeon CPU outperformed the Titan AMD Opteron CPU. The
results show a very poor OpenMP scaling with 16 cores dropping to around 30-40% efficiency. For
the remainder of the OpenMP simulations, the number of threads will be fixed to 8. This should
lead to a 40-50% efficiency depending on the cluster.

(a) Speedup (b) Efficiency (%)

Figure 6.2. OpenMP strong scalability for Aeras 3D Hydrostatic
baroclinic instability problem, uniform 30 mesh

37

6.2.2 MPI vs. MPI+OpenMP

Figure 6.3 shows speedup and efficiency of for MPI and MPI+OpenMP for up to 128 cores on the
Shannon cluster. Each node uses 16 MPI ranks or 2 MPI ranks + 8 OpenMP threads per rank. The
results show that the pure MPI implementation scales much better than the Kokkos MPI+OpenMP
implementation. Similar results are shown in Figure 6.4 for up to 1028 cores on the Titan cluster.

(a) Speedup (b) Efficiency (%)

Figure 6.3. MPI and MPI+OpenMP strong scalability study on
Shannon for Aeras 3D Hydrostatic baroclinic instability problem,
uniform 30 mesh

(a) Speedup (b) Efficiency (%)

Figure 6.4. MPI and MPI+OpenMP strong scalability study
on Titan for Aeras 3D Hydrostatic baroclinic instability problem,
uniform 30 mesh

38

6.3 Workset and Weak Scalability

A workset and weak scalability study is performed on Shannon and Titan, respectively, in order
to determine how well MPI+OpenMP and MPI+GPU perform with increasing problem size. The
workset study uses a fixed architecture to simulate the 3D Hydrostatic baroclinic instability prob-
lem on the uniform 30 mesh with different workset sizes. A workset is defined as a set of elements
which are computed on the device (e.g. CPU, GPU), and can be thought of as a threading index.
Each workset is computed one at a time on a device in order to reduce the total memory on the
device. The weak scalability study solves the same problem on three meshes for a workset of 1.
The amount of processing power is quadrupled for each subsequent mesh since each mesh has 4
times the number of elements than the previous. These studies are performed in order to determine
how well each architecture scales and to show how much speedup is acheived on each device.

6.3.1 Workset Scalability

Figure 6.5 shows the wall-clock time and OpenMP and GPU speedup over MPI for the uniform 30
mesh for different workset sizes on the Shannon cluster. The simulations using OpenMP (8 threads)
are up to 4 times faster than the single-CPU simulations. The speedup in the GPU is much smaller
because of the small workset size. Larger workset sizes could not be used because of memory
limitations on the GPU.

(a) Wall-clock time (s) (b) Speedup

Figure 6.5. OpenMP and Nvidia K80 GPU speedup over MPI
as a function of the number of elements per workset for Aeras 3D
Hydrostatic baroclinic instability on Shannon for the uniform 30
mesh

39

6.3.2 Weak Scalability

Figure 6.6 shows the wall-clock time and OpenMP/GPU speedup for the three mesh resolutions
shown in Table 5.1 on the Titan cluster. In this case, weak scalability is analyzed by using 32
MPI ranks, 32 MPI ranks + 8 OpenMP threads and 32 MPI ranks + 32 GPUs for the uniform 30
mesh, 128 MPI ranks, 128 MPI ranks + 8 OpenMP threads and 128 MPI ranks + 128 GPUs
for the uniform 60 mesh and 512 MPI ranks, 512 MPI ranks + 8 OpenMP threads and 512 MPI
ranks + 512 GPUs for the uniform 120 mesh. The results show near perfect weak scaling. The
OpenMP speedup (8 threads) is approximately 3 which is a bit less than the speedup of 4 on
Shannon. The GPU slows the simulation to approximately half of the time it would take to run a
simulation without the GPU. This is due to the small workset sizes on each GPU (approximately
168 elements per GPU). Larger workset sizes would be more efficient but could not be achieved
because of memory limitations on the GPU.

(a) Wall-clock time (s) (b) Speedup

Figure 6.6. OpenMP and Nvidia K20X GPU speedup over MPI
for the Aeras 3D Hydrostatic baroclinic instability test case on Ti-
tan

40

Chapter 7

Discussion

In this project, the Aeras 3D Hydrostatic finite element code was successfully refactored for per-
formance portability across multiple next generation architectures by utilizing the Kokkos software
package and programming model. The process of refactoring, building, executing and analyzing
the code on high performance computing architectures has been carefully documented and pre-
sented in an effort to promote the use of modern hardware such as GPUs. This project has reached
a number milestones. First, common issues in CUDA refactoring have been identified and solu-
tions have been proposed. This will be useful for future CUDA refactoring in Albany. Second,
building and executing instructions for next generation architectures have been documented for
both the Sandia GPU testbed cluster, Shannon, and the Oak Ridge supercomputer, Titan. These
instructions should aid future users in being able to utilize the modern hardware available. Lastly,
a performance analysis was executed on the Kokkos OpenMP/GPU implementation in order to set
a baseline for future performance studies. These type of studies should be performed whenever a
major milestone in performance optimization is reached in order to document hardware utilization
and performance gains and losses.

The performance analysis identified several major areas of improvement. The most concerning is
the large memory usage of the code. Large memory usage can significantly hinder the performance
of next generation architectures such as GPU. Devices have limited memory and the only way to
reduce the memory usage at runtime is distribute the work across multiple GPUs. Unfortunately,
this also decreases the amount of work the GPU can perform which causes a drastic decrease in
performance. Constructing a global Jacobian matrix usually causes large memory allocations but
this remains to be investigated. Since the problem is unsteady and requires explicit time integration,
the global Jacobian should be completely removed along with the gather/scatter operation. This
should significantly improve memory usage and performance.

Another area of major concern is OpenMP strong scalability. Assigning more OpenMP threads to
a parallel loop seems to significantly degrade performance. Efficiency dropped to around 30-40%
for 16 threads. Determining the cause of this lose in efficiency requires a profiling the code with
software such as TAU. This should show how well each core is performing. OpenMP strong scal-
ability directly affects MPI+OpenMP strong scalability. The pure MPI implementation is faster
when compared to the MPI + Kokkos OpenMP implementation with 8 threads. Less OpenMP
threads would have improved performance. Both the OpenMP and GPU performance can be im-
proved by parallelizing over more indices (e.g., the number of vertical levels). In this case, the
parallelization only occurs over cells but there are many areas of the code that can be parallelized

41

over nodes and levels. The use of shared memory could also help in operations which can be
formed into a matrix multiplication.

The weak scalability studies showed near perfect weak scaling for MPI, MPI+OpenMP and MPI+
GPU. Adding 8 OpenMP threads to the MPI implementation led to a speedup of around 3 to 4.
The GPU doubled the computation time of the MPI implementation because of the small workset
sizes. The results show that larger workset sizes will lead to better performance but the amount
of memory on the GPU needs to be reduced. The CUDA profiler called nvprof can be used to
improve the performance on the GPU. The profiler shows that CUDA UVM was not a limiting
issue in this case because the workset sizes were so small and memory transfer was minimal.
Once larger workset are used, CUDA UVM will start becoming a more significant contributor to
performance loss. In this case, it would be ideal to perform the entire iteration cycle on the GPU
and use remote direct memory access (RDMA) to completely eliminate the memory transfer from
host to device.

42

References

[1] I. Demeshko, W. Spotz, I. Tezaur, O. Guba, A. Salinger, R. Pawlowski, and M. Heroux.
Towards performance-portability of the albany finite element analysis code using the kokkos
library. J. HPC Appl. (under review), 2016.

[2] H. Carter Edwards and Christian R. Trott. Kokkos tutorials. https://github.com/kokkos/
kokkos-tutorials, 2016. Online; accessed 7-October-2016.

[3] H. Carter Edwards, Christian R. Trott, and Daniel Sunderland. Kokkos: Enabling manycore
performance portability through polymorphic memory access patterns. Journal of Parallel
and Distributed Computing, 74(12):3202–3216, 2014.

[4] M.A. Heroux, R.A. Bartlett, V.E. Howle, R.J. Hoekstra, J.J. Hu, T.G. Kolda, R.B. Lehoucq,
K.R. Long, R.P. Pawlowski, E.T. Phipps, A.G. Salinger, H.K. Thornquist, R.S. Tuminaro,
J.M. Willenbring, A. Williams, and K.S. Stanley. An overview of the Trilinos project. ACM
Trans. Math. Softw., 31(3), 2005.

[5] C. Jablonowski and D. L. Williamson. A baroclinic instability test case for atmospheric
dynamical cores. Q. J. R. Meteorol. Soc., 132, 2006. doi:10.1256/qj.06.n.

[6] A. Salinger, R. Bartlett, A. Bradley, Q. Chen, I. Demeshko, X. Gao, G. Hansen, A. Mota,
R. Muller, E. Nielsen, J. Ostien, R. Pawlowski, M. Perego, E. Phipps, W. Sun, and I. Tezaur.
Albany: Using agile components to develop a flexible, generic multiphysics analysis code.
Int. J. Multiscale Comput. Engng. (in press), 2016.

[7] W. Spotz, P. Bosler, S. Bova, I. Demeshko, J. Fike, O. Guba, J. Overfelt, A. Salinger, T. Smith,
I. Tezaur, and J. Watkins. The aeras next generation global atmosphere model. Sandia Na-
tional Laboratories Report, SAND No. 2016-XXXX, Sandia National Laboratories, Albu-
querque, NM, 2016.

[8] W. Spotz, T. Smith, I. Demeshko, and J. Fike. Aeras: a next generation global atmosphere
model. Procedia Computer Science, 51:2097–2106, 2015.

[9] M. A. Taylor. Conservation of mass and energy for the moist atmospheric primitive vari-
ables. In P. H. Lauritzen, C. Jablonowski, M. A. Taylor, and R. D. Nair, editors, Numerical
Techniques for Global Atmospheric Models, chapter 12. Springer, 2012.

[10] Christian R. Trott, Mark Hoemmen, Simon D. Hammond, and H. Carter Edwards. Kokkos:
The Programming Guide. Sandia National Laboratories, 2015. Online; accessed 7-October-
2016.

43

DISTRIBUTION:
1 MS 1320 Bill Spotz, 01446
1 MS 1320 Tom Smith, 01446
1 MS 1318 Andy Salinger, 01442
1 MS 1321 Pete Bosler, 01446
1 MS 1322 Oksana Guba, 01441
1 MS 8343 Alejandro Mota, 9042
1 MS 8343 Coleman Alleman, 9012
1 MS 8954 Cosmin Safta, 9159
1 MS 1426 Dan Sunderland, 1318
1 MS 1442 Michael Deakin, 1320
1 MS 1442 Mauro Perego, 1320
1 MS 1426 Christian Trott, 1318
1 MS 1426 Carter Edwards, 1318
1 MS 1426 Mark Hoemmen, 1320
1 MS 1426 Siva Rajamanickam, 1320
1 MS 8954 Jerry McNeish, 9159
1 MS 8959 Gayle Thayer, 9158
1 MS 0899 Technical Library, 9536 (electronic copy)

44

v1.37

